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The effects of substantial temperature and hence density changes on a low-speed 
‘incompressible ’ flow can be modelled by adopting Charles’ Law as one of the equations 
of state. It is found that planar radial inflows or outflows constitute a group of solutions 
which are self-similar for arbitrary temperature variations. When the temperature is 
written as a separable function of radius and polar angle, ordinary differential equations 
result. Permissible solutions include some with discontinuities in the temperature 
gradient across a radial line (streamline); this is a rough model of a diffusion flame 
and it is used to illustrate some features of a variable-density flow in a channel with 
radial walls in the presence of such a ‘flame ’. 

Exact analytical solutions are given for the situation in which temperature increases 
linearly with radius; no boundary layers appear for either outflow or inflow. Approxi- 
mate analytical solutions are presented for the case of a relatively rapid inflow with 
temperature independent of the radius ; avelocity boundary layer exists at the wallsand 
in the neighbourhood of the ‘ flame ’, although the latter is of small velocity amplitude. 

1. Introduction 
There are many situations, especially in the field of combustion studies, which 

involve a gas flow that is slow enough to make compressibility effects negligible, but 
which, nonetheless, involve substantial density variations as a result of some kind of 
heating. In  such circumstances it is permissible to simplify the familiar equation of 
state which links pressure p ,  density p, temperature T and molecular weight W by 
adopting Charles’ Law. With W constant, this results in the elementary statement 
that the product pT is fixed and this is the form that we shall adopt in the present 
work. 

It is consistent to neglect the pressure-work and viscous dissipation terms in the 
energy equation but, apart from these simplifications, the Navier-Stokes equations 
are used in full and some elementary solutions are sought through the medium of a 
similitude. The details can be found in the following sections, but we remark here 
that the solutions constitute an extension of the class of Jeffery-Hamel flows of a 
constant-density viscous fluid in a diverging channel with plane walls (Jeffery 1915; 
Hamel 1917)’ and of their compressible-flow analogue due to Wilhelm (1973). The 
present paper deals only with analytical matters; an exact solution for both inflow 
and outflow of a constant-viscosity gas is exhibited in $ 5  and a boundary-layer 
approximation for the inflow of a gas whose viscosity varies with temperature occupies 
§6* 



424 J .  B.  Clarke and C.  A .  Cooper 

2. The equations 

Charles’ Law 
The equations which describe the planar steady motion of a fluid which obeys 

(1) PT = P O T 0  

are (P7-J),+(PV), = 0, (2) 

d U 4  + VUJ = - (P + 3PCU, + %IL + t2PU,), + { P K  + U,)>,, (3) 

P { W  + VV,} = - {P + 5/44 + V,I>, + (2PV,)y + { P K  + ~,,>,, (4) 

pC,{UT,+ VT,} = (hT,),+(hT,),. ( 5 )  

The x and y velocity components are U and V ;  p is the dynamic viscosity coefficient, 
h is the thermal conductivity and C,, the specific heat at  constant pressure, has been 
assumed to be constant; T is the absolute temperature, p is the density and p is the 
pressure. 

The Mach number is assumed to be low enough for pressure-work and viscous 
dissipation terms to be negligible in the energy equation (5). This is consistent with the 
adoption of ( 1 )  and it is evident from that equation that the variables with a subscript 
zero constitute an appropriate set of ‘background ’ or ‘basic ’ values. Equations 
(1)-(5) will enable us to study the effects of significant temperature changes in an 
essentially low-speed motion. In particular, we remark on the coupling which exists 
between U and V variations and T variations, especially via ( 1 )  and the continuity 
relation (2). 

3. Similitude 
The problem presented by the solution of (1)-(5) is greatly simplified if similarity 

groupings of the variables can be found. Following the standard procedure as set out 
by Birkhoff (1960, chap. 4), it  is possible to show that such a similitude is given by 

pU(xory) = PfCY/X), pV(xory) = PdY/X):), P = A U 2 0 r  W h ( Y / X ) .  

Equations (1)-(5) impose no direct limitation on the behaviour of the temperature T. 
The forms just quoted are clumsy and not especially useful but if we change to a polar 
co-ordinate system 

( 6 )  1 8 = tan-l(y/z), r = (x2+ y2)+, 

u =  UcosO+VssinO, v=-UsinO+VcosO, 

i t  is readily seen that the similitude represents a purely radial flow (i.e. V/U is a function 
of y/x, or 8, only). Thus v is zero and the radial velocity component u and pressure p 
must be derived from the relations 

pur = pUP(B), ppr2 = p2P(8). (7) 

Substituting the similarity form into the continuity equation (2) shows that 

r-lpP(8) a,u/ar = 0, 

so that the similitude can be consistent with this conservation requirement only if 

(I) ,u = constant (8) 

or (11) P = P(@. (9) 
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The similitude also requires Alp to be an invariant ratio, whence it follows that A must 
obey restrictions similar to those in (8) and (9). 

However, the Prandtl number 
Pr = pC,/A (10) 

is a constant for all practical purposes, so that no additional limitation is imposed by 
A if we choose to deal with the situation of constant Prandtl number. In  dealing with 
gases it is of course necessary to recognize that p and A will, in reality, vary with T .  
Indeed pcc T is often a good approximation and it is clear that if we take account of 
density variations by using Charles’ Law ( 1 )  then we should also admit temperature 
dependence of ,u and A. Adopting the relation 

p/po = (T/To)’, p 2 07 ( 1 1 )  

(11) T = ToH(8) ( 1 2 )  

it is clear that for any p other than zero condition (9) imposes the similitude 

on the temperature. 
Case I1 is then practical but rather restrictive, so that we shall devote some time 

to the rather more artificial situation of case I, for which ,13 = 0. We may excuse this 
on grounds of expediency, since it is the primary T, p, u connexion that we wish to 
explore, and any variations of p with T can perhaps be rationalized as in some measure 
secondary effects. The r ,  8 dependence of T is unrestrained in case I, which leaves us 
with simultaneous partial differential equations to solve, but if we choose to make T 
a separable function of the r ,  8 co-ordinates, it is readily shown that the only separable 
form of the energy equation occurs when 

(I) T = To(r/ro)n H(0).  (13 )  

This definition makes H(8) dimensionless, as in (12); ro is evidently any convenient 
reference vahe of the radial co-ordinate. We shall adopt (13 )  from now on €or case I. 
The equations satisfied by the functions F(0) ,  P(0)  and H(0) can be found by sub- 
stituting (7)-( 13) into the momentum and energy equations (3 ) - (5 ) ,  remembering that 
v is zero. The results for cases I and I1 are summarized below; a prime indicates 
differentiation with respect to 8. 

Case I (p = constant) 

(n - 1 ) HP2 = - (n - 2 )  HP + +n(n - 2 )  HP + (HP)”, 
0 = - (HP)’ + ( i n  + 2 )  (HP)’,  

nPrFH = n2H + H“. 

(14a)  

(14b)  

(14c)  

( 1 4 4  

Equations (14a ,  b )  combine to give 
(n-  1 )  (HE2)’ = ( n  - 2)2 (HF)’ + (HF)”. 
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We observe that ( l ) ,  (7) and (13) combine to give 

so that the gas velocity depends upon the product p F H  and the pressure depends 
upon the product p2HP.  

4. Symmetrical channel flows 
The similarity equations of the previous section describe behaviour in the special 

case of constant temperature (n = 0, H = l), when it is easily seen that either (14a) 
or ( 15a) reduces to the classical form of equation that has been thoroughly investigated 
in the past. A concise account can be found in Whitham’s article (Rosenhead 1963, 
pp. 142-150) and we observe that in this constant-temperature, and hence constant- 
density, situation the presence of two channel walls at 0 = f a  (say) imposes two 
conditions on F which are expressions of the no-slip requirement at  a solid surface. 
Specification of 

is then suffcient to determine the solution when the temperature and density are 
constant. 

In  the present case two further conditions are generally (n .f: 0 and/or H $. constant) 
required for the temperature function H and these may well be provided by the 
specification of the wall temperatures. However, there are other situations of interest 
and we shall limit the discussion here by first imposing an overall symmetry on the 
system. With specification of the centre-line temperature we then consider two cases; 
in the first we assume that the temperature gradient with 0 is continuous, and hence 
zero, and in the second case we assume that H‘(0 + ) = - H’(0 - ) is non-zero, negative 
and given. The latter situation is a rough model of a diffusion flame lying along the 
channel’s centre-line and it is necessary to note that the essential continuity of the 
rate-of-strain tensor in the neighbourhood of such a flame (Clarke 1967) makes it 
essential to have (pFH)‘  equal to zero when 0 = 0. The boundary conditions chosen 
for the present work are summarized as cases A and B :  

F ( 0 )  = Fo (17) 

Case A 

Case B 
F ( a )  = 0, F ( 0 )  = Fo, F’(0) = 0, H ( 0 )  = 1,  H ’ ( 0 )  = 0. (18) 

F ( a )  = 0, F ( 0 )  = Fo, F’(0) = Fo6h,  H ( 0 )  = 1, H’(0) = -HA. (19) 

The definition of F(B)  in (7) shows that it is actually a local Reynolds number based 
on the radius r ;  specification of Fo as in (1  7) is therefore equivalent to selection of the 
centre-line value of this Reynolds number. It is sometimes more convenient, or even 
more realistic, to classify a channel flow by the total mass flux through it and we 
observe, again from (7), that this quantity is given by the integral 

The modulus of the integral is used in (20) to make Q positive for both net outflow 
and net inflow; the connexion between Q and Fo is evidently not direct. 



Some gas flows which obey Charles’ Law 427 

5. Analytical results for n = 1 

When ,u is constant and n = 1 equations (14c, d )  become 

(HF)”+ (HF)’ = 0, (21) 

H” + H = PrFH, (22) 

and this pair of equations clearly has simple solutions in terms of trigonometric 
functions. 

In  particular, it  is found that 

HF = F,(COS e - COS a)/(i - cos a) (23) 

for both case A and case B boundary conditions. When a, and hence 8, is small, 

and (16) and (24) show that the velocity distribution is approximately parabolic in 0 
and exactly independent of the radius. 

Turning to the temperature distribution, (22) has a solution for case A boundary 
conditions which can be written as 

(i-cosej++prFo( esine 1 
H = HA(@ = cose- PrF,cosa ~ 

1 -cosa 1 - cosa ’ (25) 

This temperature distribution has a stationary value on the centre-line of the channel, 
by hypothesis [see (IS)], but we observe that 

H>(O) = PrFo- 1, 

so that this stationary value is a minimum (maximum) for PrF, > 1 ( < 1). 
If a, the half-angle of the channel, is confined to the range 0 < a < 4.- there can be 

at  most one more stationary value for HA within each half of the channel, and this 
stationary value must be a maximum. The existence of these two temperature maxima, 
symmetrically disposed on either side of the centre-line temperature minimum, is 
only possible for a limited range of PrF, for any given a. In particular, it is necessary 
to have PrF, > 1 and this product must also be less than the value (Pr3’o)max, where 

21 1 - l/(PrFo)mnx> { 1 - cos a> = 1 - a/tan a. (27) 

When PrF, is equal to (PrF,),,,, the temperature gradient with respect to 8 falls to 
zero at  the walls, which therefore conduct no heat into or out of the channel. If PrF, 
exceeds (PrFo)max, the maximum HA values lie outside the channel and are therefore 
of no physical significance. 

It must be remembered that the temperature T is equal to To(r/ro) H(8) ,  so that the 
present configuration is essentially one for which the gas flows between walls which 
grow hotter with increasing radius. The slightly unexpected behaviour of T described 
above can then be understood in terms of the competing influences of convection and 
conduction. When convection is strong and in the outflow (r-increasing) direction it 
is necessary to conduct energy into the gas through the walls in order to maintain the 
motion; the convection requirement here is PrF, > (PrFo)mnx > 0. When PrF, is less 
than (PrF,),,, energy must be removed through the walls for the same purpose. 
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When PrFo is small enough, certainly for PrFo < 1 and including negative values of 
Fo, the wall temperature 

(28) 

will be less than the centre-line value To(r/ra). It is necessary for the sake of physical 
reality to ensure that Tw, which is the minimum value of the temperature within the 
channel in the circumstances, shall not become negative [recall that T is essentially 
an absolute temperature; see (l)]. The criterion is evidently Hw > 0, and this readily 
translates into 

(29) 

when 0 < a < &r. The right-hand side of (29) is negative for 0 < a < in, so that the 
inequality is satisfied for all positive (outflow) values of Yo. If Fo is negative (29) may 
not be satisfied. For example, if a is small (29) requires 

Tw = To(+o) H(a) = To(r/ro) Hw 

PrFo > - [ - 1 + a tan a/2( 1 - cos a)]-l 

PrF, > - 12/5a2, (30) 

so that no physically realistic solution is possible if the convective in$ou! is too rapid. 
It is interesting to note that (23) and (25) never admit any boundary-layer-like 

behaviour at  the walls for either the velocity or the temperature for any values of 
Fo and a and regardless of any limitation such as (30). This is in marked contrast to 
the constant-density situation <or large negative Fo; the appearance of velocity 
boundary layers in this case is a crucial feature (see also the next section). 

Turning to case B, which roughly models a diffusion flame at the centre of the 
channel, it is easy to show that (19), (22) and (23) give 

H = HA - Hh sin 8, (31) 

where HA is defined in ( 2 5 ) .  The various distributions of temperature with respect to 
8 are therefore simply those discussed above with the addition of a component 
- Hb sin 8. Clearly the energy flux from the ‘flame ), in the form of the magnitude of 
HA ( 2  O ) ,  is crucial, particularly with respect to its effect on condition (29). The 
numerator in the quotient on the right-hand side of this inequality must be replaced 
by H i  tana-  1, so that it is possible for inflow to be entirely forbidden if HA is too 
large. Evidently a sufficiently large wall cooling rate can never be achieved if the rate 
of energy addition from the flame is too large. 

In  the present circumstances (n = 1)  the value of HP follows directly from (14a) 
and (23): 

We observe that HP is everywhere of the same sign as Fo. Equation (16) shows that 
the pressure p diminishes in the flow direction like l /r for an outflow (Fo > 0). When 
Fo < 0, and the flow is inwards, p also diminishes in the flow direction. The result (23) 
shows that there is no reverse flow (separation), even when Fo is large and positive, but 
we have not found a separation-free diffuser since the heating necessary to produce this 
condition also causes the pressure to fall ! The result is unaffected by the presence or 
absence of a centre-line ‘flame’. 

The fact that HP in (32) is negative for the case of inflow (Po < 0) does not necessarily 
mean that the absolute pressure takes on a meaningless negative value everywhere. 
The quantity p in this analysis is essentially a relative pressure, which differs from the 

HP = ~ ~ ~ ( 7 ~ ~ ~ e - 4 ~ ~ ~ ~ ) / ( i - ~ o s a ) .  (32) 
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absolute quantity by a constant which is open for selection; making this constant 
sufficiently large and positive will confine the region of negative absolute pressures 
to within an arbitrarily small distance from the origin. 

6. A boundary-layer approximation for case 11 
When the temperature does not vary with radial position (n = 0) ,  for any given 8 

the similitude of case I1 makes it possible to include a temperature-dependent viscosity. 
Equations (1 1) and (15c) show that 

H1+1 = (p/p0) H = a + b8 h, (33) 

where a and b are constants and h is defined for later convenience. If we depart a little 
from the strict requirements of the case B boundary conditions, and select the wall 
temperature (i.e. a value for H ( a ) )  rather than the centre-line gradient HA, it  is possible 
to write (33) in the form 

where 
PIP0 = hw = (1 - (1 -ha) (8/4>”, (34) 

w = P/(l+P), h, = H;+a < 1 (ha > O ) ,  (35) 

H(0)  = 1 and H, = H(a) .  If h, is allowed to equal unity both T and ,u are constants 
and it is clear that case A boundary conditions lead directly to the constant-density 
velocity distributions; hence the limitation of h, in (35). 

One can obviously use (33) and (34) in (15d) and produce an equation for P alone; 
it is not possible to solve this equation analytically and we turn to a boundary-layer 
approximation which reveals a number of interesting features of an inflow at high 
Reynolds number in the presence of a centre-line ‘flame’. 

The reciprocal Reynolds number 6 is defined in terms of the net mass flux Q [see 

where use has been made of the symmetry condition. Defining appropriately scaled 
radial-mass-flux and pressure variables e and s, respectively, where 

e = 4P/Po) F ,  s = E2(rUIPo)2 p, (371, (38) 

eh-l+w{hU(ehl-w)’}’ + 2s = - e2, (39) 

- &(eh)’ + (shl-”)’ = 0. (40) 

equations (15a, b)  can be rewritten in the form 

The variable e is evidently normalized by the condition [see (36) and (37)] 

In  the limit E + O  the mass flux Q becomes large and (39) and (40) look properly 
set to exhibit a boundary-layer type of solution. There is at  present no restriction on 
the sign of e(8); the tacit presumption that e is O(1) as E+ 0 follows from (41) with the 
implied restriction that it is a reasonably smooth quantity that is likely to be of one 



430 J .  F.  Clarke and C .  A .  Cooper 

sign only. Then s can likewise be presumed to be O(1) and h is evidently so [see (34)]. 
The only boundary condition that we require is the no-slip condition 

e(a) = 0, (42) 

since we imply symmetry throughout, and the case B specification of Fo is replaced 
by the integral condition (41). 

An outer solution of (39) and (40) which makes 

$(@; 8) $l(@), $ = e,s, as c+O with 0 fixed (43) 

gives ~ ~ h ~ - ~  = - A ,  (44) 

(45) 

(46) 

where A is a positive constant; the latter follows from (39), since h > 0 and 

- e2 - 2s - - 2Ah-l+". 
1 -  1 -  

The value of A is found from (41) to be given by 

(2A)t = &( 1 + W )  (1 - ha) (1 - h$+~))-l, 

so that el and sl can now be found from (45) and (46). 
Condition ( 4 2 )  requires e(a) to vanish, which, since 

el(a) = 2 (2A)t = $( t + w )  (1  -ha) (h$l-@) - ha)--1 + 0, (471 

it  evidently does not do if e ( @ ;  8) is represented by e l ( @ ) .  The remedy for this deficiency 
in e l ( @  is the insertion of a boundary layer adjacent to the walls 8 = &a. We need 
deal with only the upper half of the channel; we define 

o = (a-e)/+ 
and construct inner solutions via 

$ ( @ ; e )  -Yl(0) as € 4 0  with 0 fixed, (49) 

where Y = E ,  S when $ = e ,  s. It follows that 

Matching the solutions for s shows that 

S - -Ah-l+o 
1 -  

and defining x and y(z) as 

x = (2A)4h,4(1+@)@, -Y(x) = h$-@)(2A)-t El (53) 

-y"+ y2- 1 = 0, y(0) = 0, y(c0) = T 1. (54) 
leads to 

The first condition on y follows from the no-slip requirement and the second is the 
matching condition, which makes use of (47) amongst other things. 

Writing y' = w transforms (54) into an autonomous first-order equation, which 
shows (Cole 1968, p. 149) that there is no solution of the present problem with 
y(c0) = - 1. Alternatively, if y(c0) = - 1 the differential equation in (54) requires 
- 4 ~ ' ~  + Qy3 - y = + 8, and this makes it impossible for y to be zero anywhere. Hence, 
just as in the constant-density case (Rosenhead 1963, p. 150), there are no boundary- 
layer solutions for the outflow problem. 
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For an inflow situation (54) with y(co) = + 1 has the solution 

43 1 

y = 3 tanh2((x/42) + 'p) - 2, 'p = In (43 + ,/2), (55)  

which exhibits the wall boundary-layer character of El and hence, via (49), that of 
e, directly. 

Examining the situation at  the centre-line of the channel we observe that, since 

pPH = (pole) ehl-w, (56) 

the solution which makes e N el = (2A)t h-J(l-w) [see (45)] does not satisfy the con- 
dition that (pPH)'  must vanish there, since h'(0) =+ 0 by hypothesis. It is in fact 
necessary to insert a further velocity boundary layer around the flame sheet in order 
to acquire the required continuity of the rate-of-strain tensor. Writing 

e(6'; E )  = - (2A)t + etE(q5; e), q5 = 6'/d, (57) 

it  follows from (39), (40) and matching with solutions (44) and (45) that the new 
function b is adequately represented by a,(#) to f i s t  order in e, where b, satisfies 

8; + 2(2A)t e;(o) # = 2(2A)t b,, (58)  

&;(O) = 2e;(O), cF(q5-+co)-+e;(O)#, e;(O) = -(2A)4(1-w)(1-hh,)/2a. (59) 

Equation (40) makes shl-w constant to first order and matching makes the constant 
equal to - A ,  as in (44); this result is used to produce the second term in (58). 

The first boundary condition in (59) derives from (56) and the requirement 

(pPH)' = 0 

at 0 = 0 = #; this exact condition is equivalent to 

e'(0) = (l-w)(I-hJe(O)/a, 

which translates into the quoted condition under the appropriate new limit, namely 
8 -+ 0, q5 fixed. The solution for b, is 

We can now see how the temperature-linked density and viscosity variations 
affect the flow in a heated channel. Equations (16), (37) and (38) show that 

so that in the centre of the channel, away from both the walls and the ' flame ', where 
(43) provides a valid solution, we have 

The pressure is therefore constant across the channel in this region, at  least to first 
order, while the gas velocity varies with 6' in a way which is intimately connected with 
the temperature variations. Observing that 0 6 w < 1 for 0 < p < 00, (57) shows that 
u varies rather less with 6' as p, and hence w ,  increases, but, while this dependence on 
the viscosity-temperature index is interesting, it is less significant than the fact that a 
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constant-density model would predict no variations of u with 8 at all in these regions 
of the flow. This provides some direct evidence for the view, expressed in $3 ,  that 
density variations with temperature are more important than those of the viscosity. 
The effects of h,, or H,, and w on the central portions of the channel flow are necessarily 
reflected in the details of the wall boundary layer, as can be seen from (53) and (55); 
evidently the thickness and velocity amplitude of the layer depend upon h, and o 
in quite a complicated fashion but, since (55) is also the dimensionless velocity profile 
for the constant-density problem, the general shape of the variations is not dependent 
upon these quantities. 

Evidently the ‘flame’s’ velocity boundary layer has a much smaller velocity 
amplitude than is to be found a t  the walls [consult (49) and (57)J and its strong 
dependence on the temperature-viscosity index p is interesting [(60) shows that 
8,cc e;(O) and (59) that e;(O)cc 1 -w ;  then (35) shows that d,cc l/(l +p)].  Since e;(O) 
is essentially negative i t  follows from (57) and (60) that the ‘flame’ slows the flow 
down slightly in its immediate neighbourhood. 

A referee, in addition to making a number of helpful suggestions to improve the 
presentation, has drawn attention to the fact that the similitude also admits the 
interesting possibility of spiral and other circulating flows. We are grateful to 
the Science Research Council for their support of this work. 
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